

FACULTY OF SCIENCE

M. Sc. III - Semester Examination, December 2019

Subject: Physics

Paper - I: Modern Optics

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks) (Short Answer Type)

- 1 Describe the main components in laser devices.
- 2 Discuss different pumping mechanisms in Lasers.
- 3 Explain the working of Dye laser. Mention its applications.
- 4 What are the applications of Excimer laser?
- 5 What is spatial frequency filtering? Explain.
- 6 Write a short note on Fourier transform hologram.
- 7 Discuss the phase transformation properties of a thin-lens.
- 8 Explain the self focusing of light in a non-linear medium.

PART – B (4 x 12 = 48 Marks) (Essay Answer Type)

9 (a) Derive the rate equations for three level and four level lasers systems.

OR

- (b) What is an active medium? Describe the absorption and emission processes in an active medium and derive Einstein's relations.
- 10 (a) Describe the construction and working of Nd: YAG laser.

OR

- (b) Describe the principle, construction and working of CO₂ laser. Mention some of its industrial applications.
- 11 (a) Distinguish between in-line and off-axis holograms. Give the detailed theory of off-axis holography.

OR

- (b) Describe in detail about volume hologram with necessary theory.
- 12 (a) Describe how optical mixing is achieved and explain parametric generation of light.

OF

(b) Describe the Fourier transforming property of a thin-lens when the object is placed in front of the lens.

FACULTY OF SCIENCE

M. Sc. III - Semester Examination, December 2019

Subject : Physics

Paper - II: Advanced Solid State Physics

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks) (Short Answer Type)

- 1 Write a note on Brillouin zones.
- 2 State and explain DeHass Von Alphan effect.
- 3 Discuss in detail concept of local field.
- 4 Explain in detail ferroelectric hysteresis.
- 5 Discuss in detail Weiss theory of spontaneous magnetization.
- 6 Explain in detail on ferrites and applications.
- 7 What is Meissner effect?
- 8 Discuss in detail Josephson effect.

PART – B (4 x 12 = 48 Marks) (Essay Answer Type)

9 (a) Explain in detail Fermi surfaces in simple cubic, bcc and FCC lattice.

OR

- (b) Discuss in detail effect of electric and magnetic fields on Fermi surfaces.
- 10 (a) Discuss in detail about ionic, electronic and orientational polarization and derive the expression for Clausius Mosottic relation.

OR

- (b) What is dipole relaxation and discuss the theory of ferroelectrics?
- 11 (a) Explain detail Langevin's and quantum theory of diamagnetism.

OR

- (b) Write a note on (i) Heisenberg exchange interaction (ii) Neel's theory of antiferromagnetism and (iii) Ferromagnetic domains.
- 12 (a) Discuss in detail (i) Effect of magnetic field on super conductivity, (ii) type I and type II super conductors and (iii) Isotope effect.

OR

(b) Explain in detail BCS theory of superconductivity and applications of superconductivity.

Code No. 0526 / CORE

FACULTY OF SCIENCE

M. Sc. III - Semester Examination, December 2019

Subject: Physics

(Specialization : Electronics Instrumentation)

Paper – III: Electronics Instrumentation

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks) (Short Answer Type)

What are different types of errors? Explain with examples.

2 Obtain the response of first order system to a step input.

3 Write the characteristic of isolation amplifier.

4 Draw and explain S/H circuit.

5 Explain frequency divider generator.

- 6 Discuss Audio frequency wave analyzer briefly.
- 7 Explain the working of power factor meter.
- 8 Explain the principle of seven segment display systems.

PART – B (4 x 12 = 48 Marks) (Essay Answer Type)

9 (a) Obtain the transfer function of second order instrumentation system and discuss the response of STEP input.

OF

- (b) Obtain the transfer function of first order instrumentation system and discuss the response of ramp input.
- 10 (a) Draw the circuit diagrams of logarithmic and anti-logarithmic amplifiers. Obtain expressions for their output and explain.

OR

- (b) Draw the circuit diagram of frequency to voltage converter and explain its function.
- 11 (a) Describe the function generator with a neat diagram and explain each block.

OR

- (b) What are wave analyzer? Explain the operation of harmonic distortion analyzer.
- 12 (a) Write a note on the following:
 - (i) Q-meter and (ii) Digital voltmeter

OR

(b) Explain the working of LCD system. Mention their applications.

FACULTY OF SCIENCE

M. Sc. III - Semester Examination, December 2019

Subject: Physics

(Specialization: Electronics Instrumentation)

Paper - IV (A): Digital Logic Circuits

Time: 3 Hours

Max. Marks: 80

Note: Answer all questions from Part–A and Part–B. Each question carries 4 marks in Part–A and 12 marks in Part – B.

PART – A (8 x 4 = 32 Marks) (Short Answer Type)

1 Simplify the expression AB'C'+A'B'C'+A'BC' + A'B'C and draw the required logic circuit using basic gates.

2 Designs a 4-bit parallel binary adder.

3 Explain the construction of NAND and NOR gate latches.

4 Write a note on 74193 counter.

- 5 What are the TTL series characteristics?
- 6 Write a note on code converters.
- 7 Write a note on static RAM.
- 8 Explain the logic for programming of PLD.

PART – B (4 x 12 = 48 Marks) (Essay Answer Type)

9 (a) Explain the Karnaugh map method for simplifying the four variable sum of products by various processes.

OR

- (b) Explain in detail about the singed numbers, binary subtraction and BCD addition with examples.
- 10 (a) Explain the construction and working of J-K flip-flop with timing diagram and comment on toggling.

OR

- (b) Discuss the construction and operation of 4-bits synchronous counter and mention its limitations.
- 11 (a) Explain the construction, operation and characteristics of emitter coupled logic (ECL).

OR

- (b) Discuss the construction and working of multiplexers and mention their applications.
- 12 (a) Explain the architecture and discuss various types of ROMs.

OR

(b) Describe the architecture of VHDL and explain the method of representing data in VHDL.
